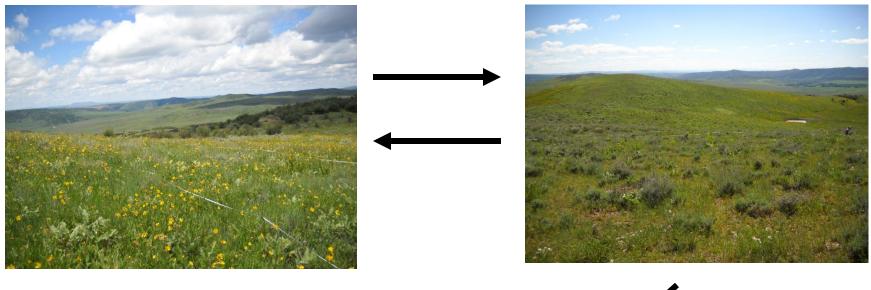
Multi-disciplinary development of state and transition models An Example from Northwestern Colorado

Emily Kachergis¹ and Maria Fernandez-Gimenez²

¹ USDA-Agricultural Research Service ²Colorado State University

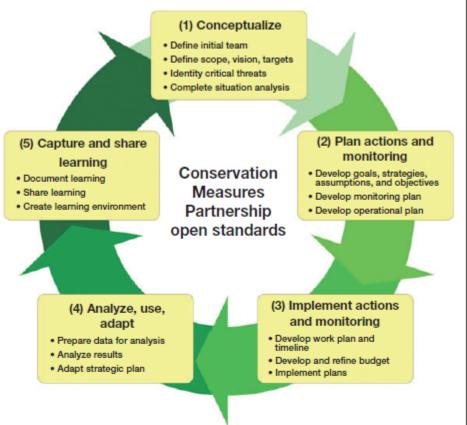
United States Department of Agriculture National Institute of Food and Agriculture


Outline

- Introduction
- Integrating Local Knowledge and Field Data to Create STMs in northwestern Colorado
- Lessons Learned

Models help us learn about the way the world works

State and Transition Models: A Road Map to Ecological Change



STMs also help us learn

- Tacit → explicit knowledge
- Store our current understanding of vegetation dynamics
- Allow it to be updated as we learn more

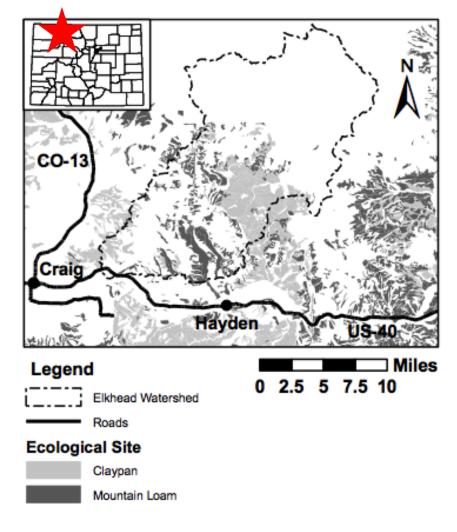
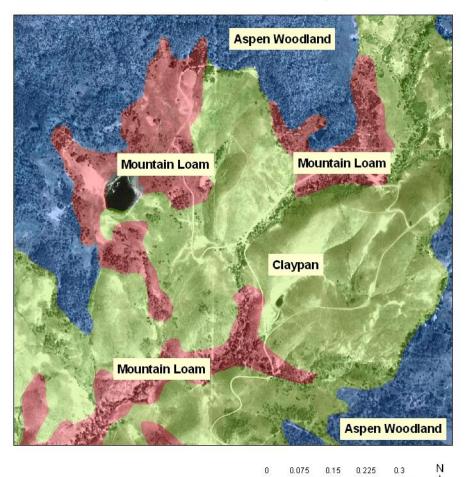

Adaptive Management Cycle

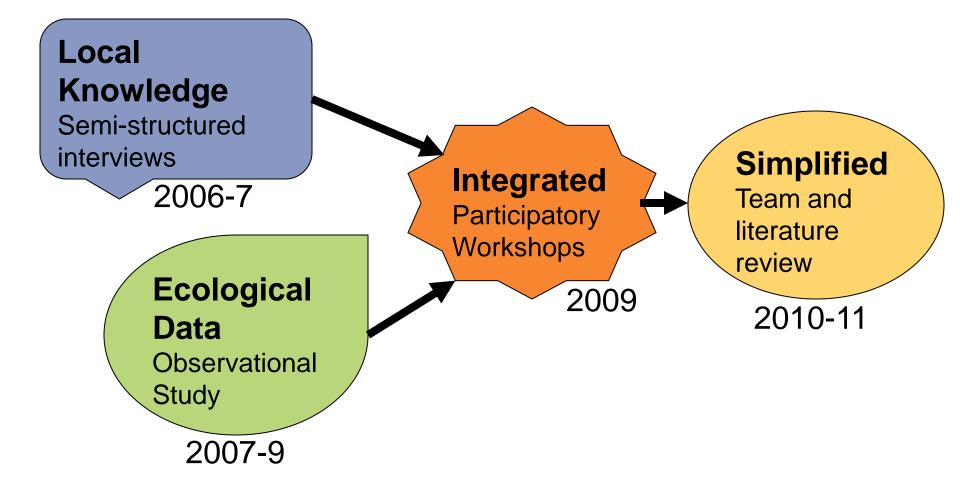
Figure 2. The Open Standards Project Management Cycle. These are from the Conservation Measures Partnership. The standards are five steps that comprise the project management cycle: (1) conceptualizing the project vision and context; (2) planning actions and monitoring; (3) implementing actions and monitoring; (4) analyzing data, using the results, and adapting the project; and (5) capturing and sharing learning. It is a constantly evolving framework. Information can be found at www.conservationmeasures.org/CMP/.

Grantham et al. 2010 Front. Ecol. Environment


Study Area: Elkhead Watershed, northwestern Colorado

A Patchwork of Ecological Sites

Example Ecological Site Map with Aerial Photo State and Transition Model Project



Learning from the Land in Northwest Colorado

How did we Learn from the Land in Northwest Colorado?



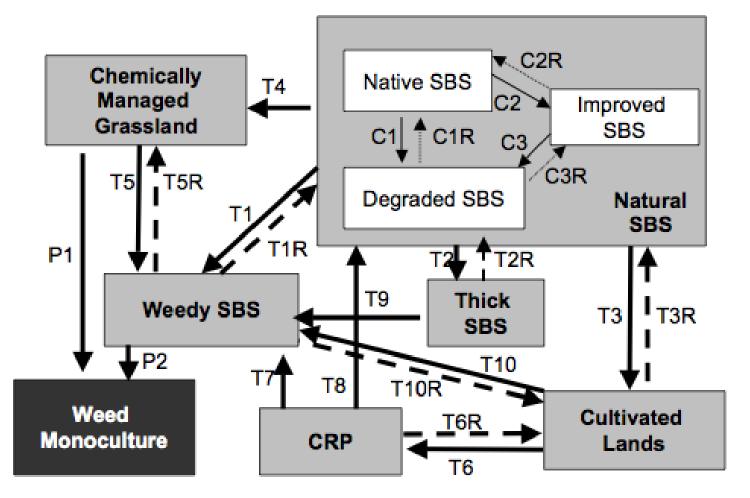
Sagebrush Steppe State-and-Transition Model Based on Local Knowledge

Corrie Knapp, MS in Rangeland Ecology Colorado State University

Local Knowledge Documentation

Participant Identification

- County Ownership Records
- Community Referrals

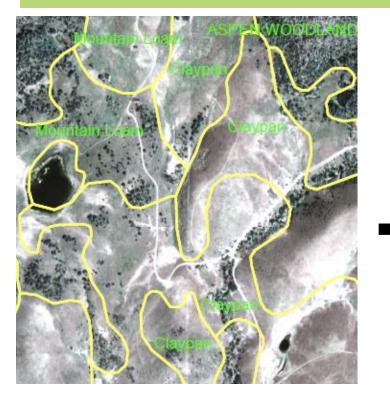

Interviews (43)

- Semi-structured interviews (32)
- Field Interviews (11)

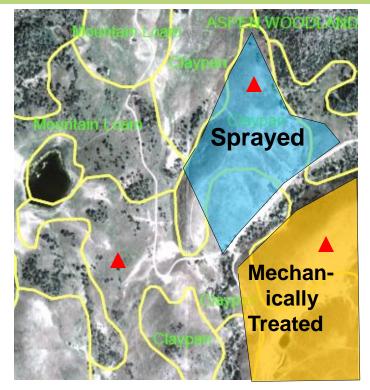
Community Meetings

Validation

LOCAL KNOWLEDGE STM FOR SAGEBRUSH STEPPE VEGETATION TYPE

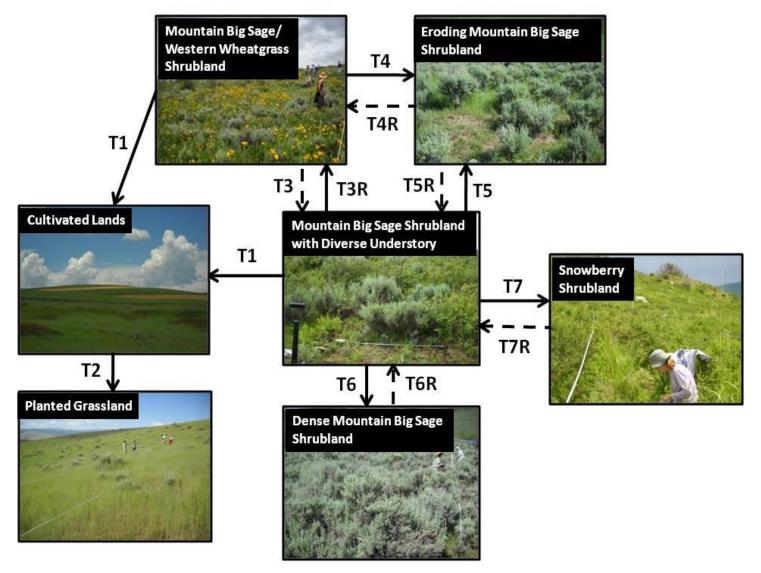


Building Data-Driven State-and-Transition Models



Emily Kachergis PhD in Ecology, Colorado State University

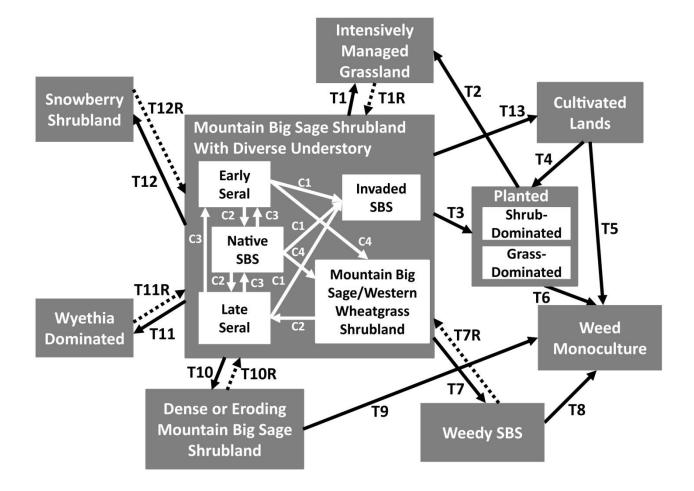
Where did we collect data?


Claypan and Mountain Loam Ecological Sites based on NRCS soil maps


Different Combinations of Management Practices

Mountain Loam STM

Mountain Loam Data-Driven State-and-Transition Model


Model Evaluation & Integration Workshops

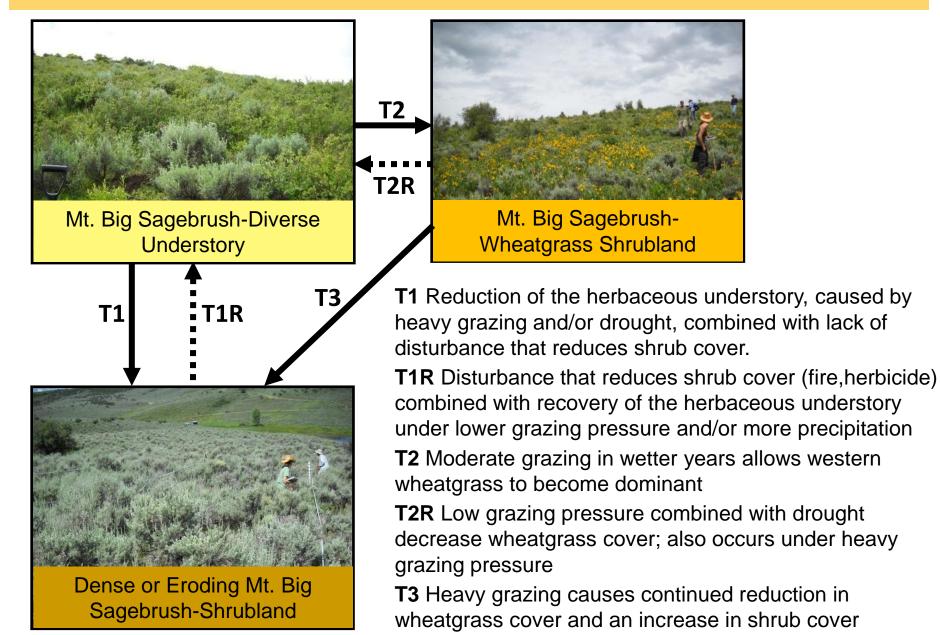
2009 Model Integration Workshops -- Process

- 1. Brief introduction to STMs and concepts
- 2. Brief introduction to each model
- 3. Small-group breakout sessions with a large paper copy of each model
- 4. Group modeling process
- 5. Assessing agreement
- 6. Survey

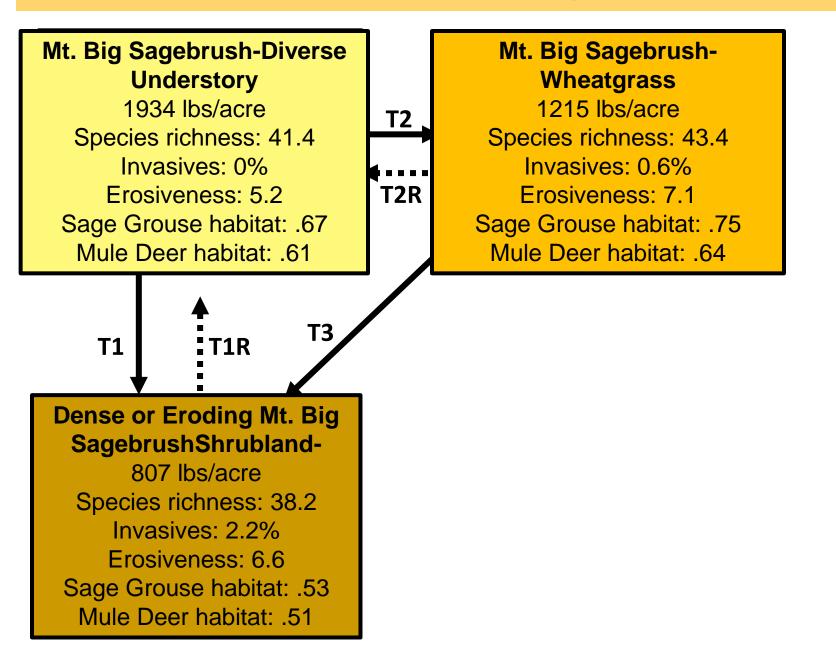
Integrated Mt. Loam Model

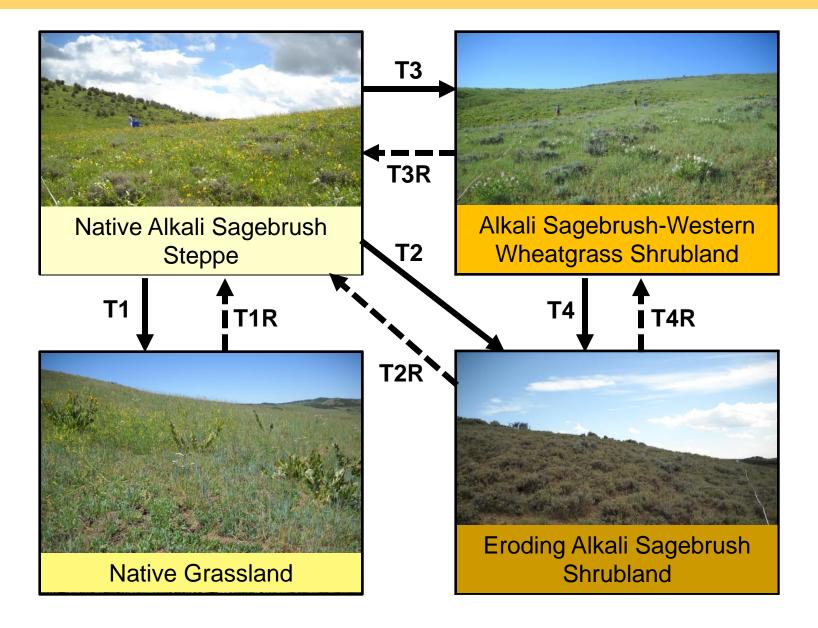
Model Simplification

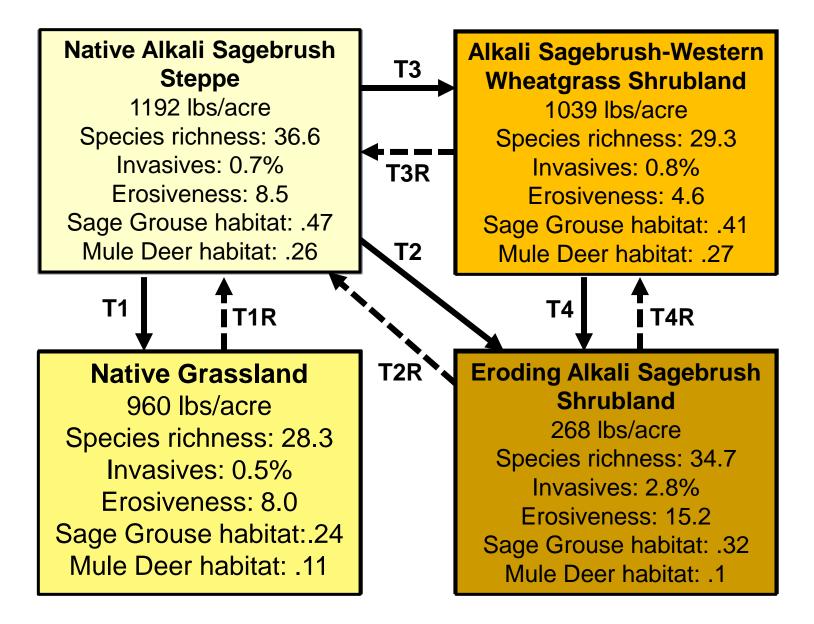
Maximum of four states, in order to quantify **Review by inter**disciplinary team: 3 human ecologists, 4 rangeland ecologists, 2 ag economists) Literature review **Transition probability** elicitation

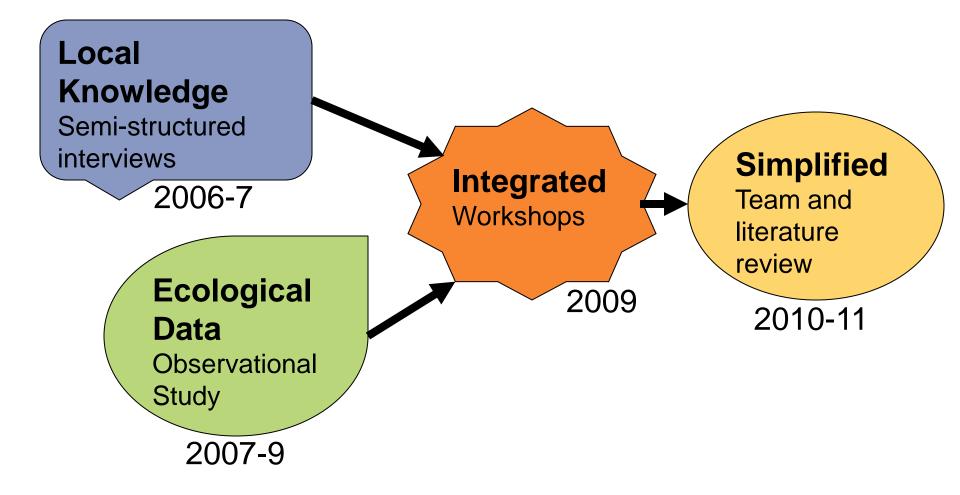

Transition Probability Elicitation

1.3 Imagine a situation like that described by the conditions in row A land that has been aerial sprayed in the last 3 years. How many pastures out of 10 that had been aerially sprayed but not burned in the last 3 years have Moderate-High Shrub Cover? Circle that number.

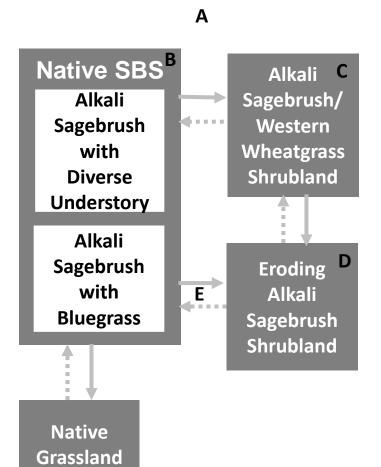

	Fire		Probability Moderate- High Shrub Cover		
A	No	Yes	1 2 3 4 5 6 7 8 9 10		


Mountain Loam STM-Simplified for Simulation Model


Mountain Loam STM--Ecosystem Services


Claypan STM-Simplified for Simulation Model

Claypan STM-Ecosystem Services



What did we learn?

Model development is a process...

- A. Soil descriptions and plant species composition differ from other ecological sites, justifying the separation into the Claypan ecological site (ED)
- B. "Diverse" and "Bluegrass" are perceived to shift easily between each other/not make a big difference for management, so are grouped within a "Native Sagebrush Steppe" state (LK, ED, IN)
- C. Alkali Sagebrush/Western Wheatgrass is perceived to be different from the Native SBS because of soil dynamic property differences (ED); LK, IN, SI varied from seeing this as part of the range of variability of Native SBS (weather or soil texturerelated) to seeing it as a degraded state to seeing it as a desirable state for grazing
- D. Eroding Alkali sagebrush shrubland is a separate state because the process of erosion is accelerated here (LK, ED, IN)
- E. High grazing pressure, drought, and/or fire reduce herbaceous plant cover, causing erosion; reverse transition caused by the opposite (LK, ED, IN, SI)

...of accumulating evidence

Different knowledge types have different strengths and limitations...

Туре	Strength	Limitation	Output
Local Knowledge	 Long time frame Variety of management practices/disturbances Identifies social drivers Improves communication 	 No quantitative evidence Not as specific about biophysical dynamics 	STM for a vegetation type in a region (or, with field trips, ecological site)
Ecological Data (Obser- vational)	 Quantitative evidence Records a variety of biophysical indicators 	 Misses temporal variability May miss value-defined states 	STM for an ecological site in a region
Model Integration	 Reconciles different knowledge sources Complex More accurate 	 Representing areas of disagreement Complex 	Complex STM for an ecological site, incorporating more drivers
Simplified	- Easier to use and quantify	 Lacks complexity and nuance of real world 	Simple STM for an ecological site, focused on the most frequent/ important dynamics

Local Knowledge	Ecological Data	Integrated	Simplified
Natural sagebrush steppe	Mountain big sagebrush/ diverse understory	Mountain big sagebrush/ diverse understory	Mountain big sagebrush/ diverse understory
		Early seral	
Native sagebrush steppe		Native sagebrush steppe	
		Late seral	
Degraded sagebrush steppe	Mountain big sagebrush/western wheatgrass	Mountain big sagebrush/western wheatgrass	Mountain big sagebrush/western wheatgrass
Improved sagebrush steppe			
		Invaded sagebrush steppe	
Chemically managed grassland		Intensively managed grassland	
Weedy sagebrush steppe		Weedy sagebrush steppe	
Thick sagebrush steppe	Dense mountain big sagebrush shrubland	Dense/eroding mountain big sagebrush shrubland	Dense/eroding mountain big sagebrush shrubland
	Eroding mountain big sagebrush shrubland		
Cultivated lands	Cultivated lands	Cultivated lands	
Conservation Reserve Program	Planted grasslands		
DU	t are ultimate	ely complem	ientary

Disagreements happen...

...but they are fruitful for future research and learning

Hypotheses that can be tested using Adaptive Management:

Claypan Eroding

- Transition to Eroding caused by heavy grazing, drought, and/or fire
- Transition back to Diverse is caused by reduction in grazing and favorable precipitation, although it is very unlikely

Mountain Loam Dense

- Transition to Dense caused by heavy grazing and/or drought that reduces shrub cover
- Transition back requires shrub disturbance in addition to favorable precipitation and reduced grazing, and is fairly likely given these conditions

Implications for STM development

 Integrating multiple knowledge sources makes better models Increases buy-in, willingness to use models on the ground Increases potential for learning Next step: apply STMs on the ground in an adaptive management context

Thanks!

Project team: Maria Fernandez-Gimenez, Emily Kachergis, Windy Kelley, Corrie Knapp, Kira Puntenney, Willow Hibbs, Jay Parsons, James Pritchett, John Ritten, Roy Roath, Monique Rocca, Ryan Wattles

Community Advisory Group: Ranchers of the Elkhead watershed and Moffatt County, Routt County Extension, Routt National Forest, BLM Little Snake Field Office, CO Division of Wildlife, TNC Carpenter Ranch, NRCS, Community Agricultural Alliance, Tread of Pioneers Museum.

> Funding provided by: USDA NIFA AFRI, CO Agricultural Experiment Station, USDA NRCS

Questions?

Summing it all up...

Ways of incorporating local knowledge

Table 1. Comparison of knowledge elicitation techniques¹ Number needed Opportunity for ranchers to learn about stateper ecological Time commitment Time required Interaction among Method site² and-transition models for ranchers for analysis participants Single ongoing process (4-8 Development team meetings) Weeks-months None High High 1 - 2Medium 3-8 hours 4-8 hours Workshops Medium-High Interviews 5 - 10Medium 1-3 hours 1-2 days None 1 - 22 hours 2-6 hours Medium-High Focus groups Low Surveys 30 - 50Low 30 minutes-1 hour 1-2 days None 1 - 21-2 hours 2-4 hours Low-Medium Feedback meeting Low

¹The time estimations provided in this table serve as a general reference and will vary based on the individual and prior experience with methods.

²Number of events will vary based on the heterogeneity and spatial scale of the ecological site.

Knapp et al. 2010 Rangelands

Where to Find ESDs?

Ecological Site Description System

6/2/10 10:37 AM 0:29 AM

Ecological Site Description

Ecological Site Description Selection

Select a site to view Report

ID	Туре	MLRA	Site Name	Biotic Name
<u>R067AY102WY</u>	R	067A	Choppy Sands (CS) 12-17" Precipitation Zone	
<u>R067AY104WY</u>	R	067A	Clayey (Cy) 12-17" Precipitation Zone	
<u>R067AY106WY</u>	R	067A	Clayey Overflow (CyO) 12-17" Precipitation Zone	
<u>R067AY112WY</u>	R	067A	Gravelly (Gr) 12-17" Precipitation Zone	
R067AY114WY	R	067A	Gravelly Loamy (GrLy) 12-17" Precipitation Zone	
<u>R067AY120WY</u>	R	067A	Limy Upland (LiU) 12- 17" Precipitation Zone	
<u>R067AY122WY</u>	R	067A	Loamy (Ly) 12-17" Precipitation Zone	
<u>R067AY124WY</u>	R	067A	Loamy Lowland (LyL) 12-17" Precipitation Zone	
<u>R067AY126WY</u>	R	067A	Loamy Overflow (LyO) 12-17" Precipitation Zone	
R067AY134WY	R	067A	Rocky Hills (RH) 12- 17" Precipitation Zone	
<u>R067AY138WY</u>	R	067A	Saline Lowland (SL) 12-17" Precipitation Zone	
			Saline Subirrigated	

Fax: 817-509-3336

Fax: 817-509-3336

Reviewed and completed ESDs: <u>http://esis.sc.egov.usda.gov</u>

Where to Get Additional Information?

Contact Us | NRCS

Contact NRCS

- NRCS Headquarters Contacts
- Technical and Program Area Specialists Where to Get Information
- Webmasters for Information or Comments About this Web Site
- Civil Rights
- Freedom of Information Act (FOIA)

NRCS Office Locations

- Local NRCS Service Centers (There are Service Centers in most U.S. counties)
- State Offices
- National Technology Support Centers
 <u>East NTSC Directory
 Central NTSC Directory
 West NTSC Directory
 </u>
- Major Land Resource Areas (MLRA)
- Earth Team

National Headquarters

Postal Mail

Natural Resources Conservation Service Attn: Public Affairs Division P.O. Box 2890 Washington, DC 20013

Street Address

Natural Resources Conservation Service 14th and Independence Avenue, SW Washington, DC 20250

Local NRCS office: http://www.nrcs.usda.gov/

Where to Find Soil Maps?

Area of Interest Interactive Map	0 6 0 11 1
s	
s	
View Extent Commence	
View Extent Contiguous U.S. Scale Inot	to scale) is
	1.
ALL DA	and the
	U.C.
Carlo and a second second	n
NO NO	
	RYANH.
	CT MA
CA NU UT	A PROPERTY OF
CO KS MO KY	VYA

FOIA | Accessibility Statement | Privacy Policy | Non-Discrimination Statement | Information Quality | USA.gov | White House

http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm

Identifying Ecological Sites on Your Ranch

1. Gather Information	2. Go to the field	3. Compare physical characteristics	4. Compare vegetation
 Key to Ecological Sites Topographical Map Soil Map Soil Survey Descriptions Ecological site descriptions (ESD) 	 Go to a site. Find out where you are on the maps. According to the soil and topographic maps, what ecological site should you be on? 	 Do you have the same topography as the ESD? Are you at the same elevation as the ESD? Is the site in the same aspect as the ESD? Are the soil properties the same as described in the ESD? 	 What plants are on the site? Which state or community are you in?